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External noise in periodically forced Rayleigh-Beard convection
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The effect of internal and external noise sources on the onset of RayléigirdBeonvection is studied for
the case of time-periodic forcing. Internal noise is modeled through the inclusion of an additive white Gaussian
noise field in the Swift-Hohenberg equation. External noise is modeled as multiplicative Gaussian noise. A
comparison with available theoretical and experimental data is presented. We conclude that noise in the control
parameter of the Swift-Hohenberg equation is not likely to explain the difference between the thermal noise
intensity and the one needed to make theory fit the experim3it63-651X96)04512-6

PACS numbes): 47.20.Bp, 05.40tj, 47.20.Hw, 02.50.Ey

Very recently, Gar@-Ojalvo et al. [1] have studied the with the intensity of the fluctuations in the control parameter
Swift-Hohenberg equation in the presence of multiplicativecompatible with recent experimer(ts].
noise. They aim to describe a situation in which a noise has We begin by briefly recalling the standard theory of
been superimposed on the temperature gradient between tR@yleigh-Baard convection. In the typical experimental set-
two plates of a Rayleigh-Berd cell. ting, we have a fluid between two horizontal plates, forming

The influence of noise on the onset of Rayleighh@a  a cell of lateral size, heightd, and aspect ratih =L/d.
convection has been studied over the y¢ar3] both experi- The density of the fluid i, its temperature i3, its velocity
mentally [4—6] and theoretically[2,7]. However, rigorous is u, and its pressure ig. The kinematic viscosity is denoted
analytic results are scarce due to the technical difficulties oby v, the thermal diffusivity byx, and the gravitational ac-
the underlying equations, and numerical simulations are ofeeleration byg.
ten very expensive in CPU time, so the problem still poses The description of the system proceeds by writing the
several unanswered questions. Navier-Stokes equations in the Boussinesq approximation

One of these concerns is the noise strength. For fluids in E3], with rigid boundary conditionai(z=0)=u(z=d)=0
Rayleigh-Bmard cell, the thermal noise strength can beand T(z=0)=T(z=d)+AT, setting 6=T—Ty(z) (with
shown to beF,~kgT/pdv? for both free-slip[7] and rigid T, the temperature profile in the conductive stagad intro-
[8] boundary conditions, where is the mass density] the  ducing adimensional variables by the scaling («/d?)t,
plate separation, and the kinematic viscosity. Below the |—I/d, AT—R, whereR=(«gd3AT)/(«v) is the Rayleigh
convective onset, Wit al. [6] have found that the noise number. Defining the Prandtl number= v/ «, the evolution
power needed to explain their measurements agrees with thégyuations for the temperature and velocity fields then read
prediction. But in experiments that modulate the control pa-

rameter through the onsgb], a much greatetby a factor o Yo+u-V)u=—Vp+ 62+ V2, (1a
~10% noise strength is needed, and there is no explanation
yet for this discrepancy. Despite a great deal of work by (8,+U-V)8=Ru,+ V20 (1b)

many authors, a mechanism enabling thermal noise alone to
provide the driving force for the onset of convection in these
dynamicexperiments, has not still been propos$8d

A possible way out of this conundrum is the inclusion of | .
external (nonthermal noise sources. In Refl] Garéa-  With boundary conditionsi=6=0 atz=0, d. ,
Ojalvo et al. addressed this issue for the static case. In this Near the convection onset, linear stability analysis of
work we study the effect of external noise on the Rayleigh-N€se equations gives the critical Rayleigh number
Bénard convection with sinusoidal modulation of the control Re=1707.76 and the critical wave numbgg=3.117[3].

V.u=0, (10

parameter, which has been studied experimen{&lyand Introducing the order parametdf(r,t) with
theoretically[9] in the context of internal noise. We intro- _ _ .
duce a self-consistent approximation to the corresponding u, fc W X (vertical eigenfunctions 2

Swift-Hohenberg equation, which allows an efficient numeri-

cal calculation of the self-correlation of the order parameter[herer stands for(x,y)] and applyingVxVx to Eq. (13
We show that our approach reproduces the known resulgives the Swift-Hohenber@SH) equation[2,3]

both for the dynamic case without external ndi8el0] and

for the static case with external noigE. Then we estimate Toatqr(r,t):[f_gg(qg+ V2)2—gW2(r,t)]¥(r,t)
the strength of the external noise that would be needed to fit
the experimental results of Meyet al. [5], and compare it +D &(r,1), 3
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T y T y (see, €.9.[3,9,10) show that the transition line predicted
0.30 ° from the standard theory can be made to fit the experimental
data, only by taking the internal noise strength as an adjust-
i able parameter and setting it B~ 10°Dy,. The immediate

& 020 Deterministic conclusion is that if the theory is correct there must be addi-
o010k b ] tional noise sources besides the pure th.ermodynamic noise.

' Stochastic The current proposals are hydrodynamic mechanisms that
0.00 .2 can enhance the thermodynamic noise intensity or make it

nonwhite, and external noise sources such as fluctuations in
the boundary temperature of the cell. In this work we will
consider only the effect of the latter.

A proposed source of external noise are fluctuations in the

FIG. 1. Order-disorder transition line for the one-mode equationContrOI parametee (i.e., in AT) [1], due to imperfect tem-

(4). The circles are the experimental data of Megeal. [5]. The ~ Perature stabilization in the cel's upper and lower plates.
continuous line is the prediction of the MF approximation for 1hiS amounts to rewriting3) with

y=5x10"". The dotted line is the result of 1Monte Carlo runs

with the samey; the linewidth is greater than the standard devia- € — e+ \dn(r,t), (5)
tion.

000 010 020 5 030 040 050

5 ~4 2 where 7(r,t) is again a zero-mean, unit variance Gaussian

Whezre 7_0:(‘7+0'5117)/(19;?57)’ 50:92'148' £=%&/  white noise field, which we take as independen{@tt). As

(40p), 9=0.6995-0.004% "+0.0083s"“, g=0/3, € ysual in this contexf1], Eq. (3) with multiplicative noise

=(R—-Ry)/R.. We have modeled thermal noise as usual, bymust be interpreted in the Stratonovich sense.

adding a zero-mean, unit variance Gaussian white noise field The main difficulty solving(3) or (4) is their nonlinearity.

&(r,t), that is, (&(r,t))=0, (&(r,)&(r',t"))=48(r—r')  The usual linearizatiorisee, e.g., Ref[3], and references

o(t—t"). Its intensity, as given by equilibrium thermody- therein around thedeterministicconductive profile(corre-

namics 3], is Dy=20kgT/(Repdr?)~10"" The small-  sponding to¥?=0) is clearly unsatisfactory for the periodic-

ness of this noise intensity has been experimentally verifiegorcing experiment, though it gives good results for the static

[5,6] for € (i.e., AT) independent of time and below the case below convective ongt,6].

convection threshold. The approximation introduced in this work consists in re-
A well-known simplified version of3) is the one-mode placing(3) by

equation[3,4,9

5 rod W (1.t =[e+Vd(r.t) — (a5 +V?)?
A=l(ee)—gATAT \TED. @ —g(PH)L(r,H)+DErY,  (6)

for the slowest modé of the amplitude equatiof#] which  where(¥?(t)) is assumed independentoby the (statistio
describes the system in a finite cylindrical cell of radius translational invariance df3), and is self-consistently com-
Here e.=(&m/L)? £(t) is a zero-mean, unit variance puteda posteriori This is in the same spirit of the usual
Gaussian white noise, ang=D [3]. mean-field approximation of statistical mechanics, which as-

The experiment we consider was performed by Meyersumes that the only important configuration near a critical
et al. [5]. The working fluid was water, witp=1, T~300 point is the spatially uniform on¢l1l], hence we call it
K, k=1.47X 10;3 cm?/s, ando=6. The cell was cylindri- “mean-field” (MF) approximation. Fourier transforming
cal with radiusL=3.18 cm, heighd=0.318 cm, and rigid r—Kk, and using Novikov's theorerfil2] or a direct gener-
boundary conditions. The system was forced to sweep relization of the known correlation formulagl3], the
peatedly through its convective onset by settinginstantaneous order-parameter structure facty(k,t)
€(t) = eg+ Scoswt, with |8|>€,>0 and w=1. The main =(¥*(k,t)¥(k,t)) can be shown to obeffor long times
quantity measured was the Nusselt numbek” the equation
«(1N)[{¥?) dr. As will be shown later, in our approach
(¥2) is independent of the coordinates, so the spatial aver- J 2 -
aging can be omitted. Eso(k,t)z;( e(t) +d—£5(q5—k?)?

In this experiment an order-disorder transition was ob-
served. This is a sharp transition in the) (6) plane between g (=
“stochastic” behavior(the convective cell pattern is not re- - z—f So(v,t)v dv)So(k,t)

. “ Sy )

produced for successive cycleand “deterministic” behav-
ior (the same convective pattern reappears in successive d (= D
cycles. This transition is depicted in Fig. 1. The transition + ﬁf So(v,t)v dv+ —. (7)
line can be defined as the curve on which the order- mTJo T
parameter self-correlation after one period of the external
forcing, (W (r,t+ 27/ w)W(r,t)), is equal to(¥3(r,t)}/2.  Similarly the two-times structure factor S(k,t,t’)
Several numeric andapproximatg analytic computations =(W¥*(k,t)¥(k,t")) can be shown to obey
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FIG. 2. Order-disorder transition line for the Swift-Hohenberg
equation(3). The circles are the experimental data of Megeal. FIG. 4. Steady heat flux versusfor the static case of Refl],
[5]. The lines are the predictions of the MF approximation for for D=0.001. The continuous line is the prediction of the MF ap-
D=D,=1.172<10 ** (continuous ling and D=5x 10°Dy, (dot-  proximation to the SH equation fat=0; the dashed line is the
ted line. prediction ford=0.1.

J 1 _
WS(k,t,t’)z;( e(t’)+d—£3(q3—k?)? and mean-square value of the order parameter. In what fol-
lows, these integro-differential equations are solved numeri-
g (= cally, and the predicted order-disorder transition line is then
- ﬁfo So(v,t')v dv)S(k,t,t’), (8 obtained through Eq10). . o
In order to assess the validity of the MF approximation,
we first addressed the one-mode equatibnwith additive
noise only, for the parameter values of the experiment of
Meyer et al. [5]. We computed the order-disorder transition
line predicted by the MF approximation {d), thoroughly
similar to that leading fron{3) to (6)—(8). Besides, we per-
formed a Monte Carlo integration of E@4) [10,14. We
Je“k'“"/)S(k,t,t’) d2k plotted in Fig. 1 the corresponding transition lines, taking
v as an adjustable parameter as in RE¥s10]. The agree-
©) ment between both approaches is excellent, providing a vali-
dation of MF.
Next we computed the transition line predicted frém—
1 (e (10) for the SH equation with additive noise only, and the
<q,2(t)>:2_f So(k,t)k dk. (10) parameters of Meyegt al.[5]. The result is shown in Fig. 2.
mJo We observe that fitting the experimental data requires an
) . internal noise intensityd =5x 10°Dy, as usual3,9,10, but
12'he closed character of the evolution equation3$gror  pesides this the agreement is as good as for the approaches of
(¥*)) makes the approximatiof6) self-consistent. Equa- these references. This provides further validation of MF.

tions (7) and (8) have time-periodic solutions in the long-  \ye then solved7)—(8) for the SH equation with additive
time (asymptoti¢ regime, which provide the self-correlation

with t'>t and initial conditionS(k,t,t)=Sy(k,t). Here S
andS, depend only ork=|k| because of théstatistig rota-
tional symmetry of(3). From these quantities we can com-
pute the order-parameter self-correlation

(W(rw(rt'))=

(2m)?

and its mean-square value

0.20 = . 0.30
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FIG. 5. Order-disorder transition line for the Swift-Hohenberg
FIG. 3. Transmitted heat flux versus time for the static case oequation(3). The circles are the experimental data of Megeal.
Ref. [1], for D=0.001 ande= —0.05. The continuous line is the [5]. The lines are the predictions of the MF approximation for
prediction of the MF approximation to the SH equation for D=Dy=1.172x10 ! and successively higher values df=0,
d=0.1; the dashed line is the prediction fd=0. The prediction 10°Dy,, 1Dy, and 1.X 10°Dy,. The crosses are the MF predic-
for the linear SH equation withd=0.1 is the dotted line. tion for d=10"#, compatible with the measurements of Réf].
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and multiplicative noise, and the parameters of the static caseative noise in the SH equation, but taking the internal noise
considered in Ref1] (e=a=const,7y=¢,=go=g=1).In  to beD=Dy,. The results are plotted in Fig. 5. _
Fig. 3 we plotted the transmitted heat flfix(¥?)] as a We observe that the predicted transition line remains
function of time for internal nois®=0.001 ande=—0.05 the same as for additive noise up do-10°Dy,, and the
(slightly below the convective onset for additive noise gnly €xperimental transition line would be fitted fdr~10°Dy,.
We see that adding a small external naise0.1 anticipates This situation is far worse than that for purely additive

h f fi in REt1. We al ; noise, in which the thermal_noise intensity must be exagger-
Compatison purposes.ihe fux precicied by the lineat apeied bY a facior of-10° to ft the data.
Besides, it must be noted that®m),,~ 102, while recent

proximation to(3) considered in Ref.1]. In Fig. 4 we plot- ;
S , _experimentd 6] have shown that the lower and upper plate
ted the steady heat flutong-time regimg versus the deter temperaturegthus €) are routinely stabilized better than one

ministic control parametea. The predicted anticipation of : . .
the convective tr?reshold fat>0 ispobtained P part in 10 3. The typical values ok, and § being of order
' 101, so big a value ofl is doubtful.

The agreement with the results of R¢L] is excellent. We can conclude therefore that the inclusion of external
We must note, however, théexcept for the linear case in . L S
noise as multiplicative noise in the control parameter of the

Fig. 3) the results of Refl1] have been obtained through a Swift-Hohenberg equation is not likely to explain the dis-

Monte Carlo integration of the full two-dimensional SH crepancy between the thermodynamic and observed noise
equation. It is worth noting that the anticipation of the Con'inte[?]sitigs y

vective threshold is appreciable only fdk 100D.

Finally, we computed throug{¥)—(10) the order-disorder This work has been supported in part by CONICOR Grant
transition line for the parameters of the time-periodic experi-No. 3230/94 and ANTORCHAS Grant No. A-13359/1-
ment of Meyeret al. [5], adding external noise as multipli- 000050.
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