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The effect of internal and external noise sources on the onset of Rayleigh-Be´nard convection is studied for
the case of time-periodic forcing. Internal noise is modeled through the inclusion of an additive white Gaussian
noise field in the Swift-Hohenberg equation. External noise is modeled as multiplicative Gaussian noise. A
comparison with available theoretical and experimental data is presented. We conclude that noise in the control
parameter of the Swift-Hohenberg equation is not likely to explain the difference between the thermal noise
intensity and the one needed to make theory fit the experiments.@S1063-651X~96!04512-6#

PACS number~s!: 47.20.Bp, 05.40.1j, 47.20.Hw, 02.50.Ey

Very recently, Garcı´a-Ojalvo et al. @1# have studied the
Swift-Hohenberg equation in the presence of multiplicative
noise. They aim to describe a situation in which a noise has
been superimposed on the temperature gradient between the
two plates of a Rayleigh-Be´nard cell.

The influence of noise on the onset of Rayleigh-Be´nard
convection has been studied over the years@2,3# both experi-
mentally @4–6# and theoretically@2,7#. However, rigorous
analytic results are scarce due to the technical difficulties of
the underlying equations, and numerical simulations are of-
ten very expensive in CPU time, so the problem still poses
several unanswered questions.

One of these concerns is the noise strength. For fluids in a
Rayleigh-Bénard cell, the thermal noise strength can be
shown to beF th;kBT/rdn2 for both free-slip@7# and rigid
@8# boundary conditions, wherer is the mass density,d the
plate separation, andn the kinematic viscosity. Below the
convective onset, Wuet al. @6# have found that the noise
power needed to explain their measurements agrees with this
prediction. But in experiments that modulate the control pa-
rameter through the onset@5#, a much greater~by a factor
;104) noise strength is needed, and there is no explanation
yet for this discrepancy. Despite a great deal of work by
many authors, a mechanism enabling thermal noise alone to
provide the driving force for the onset of convection in these
dynamicexperiments, has not still been proposed@8#.

A possible way out of this conundrum is the inclusion of
external ~nonthermal! noise sources. In Ref.@1# Garcı́a-
Ojalvo et al. addressed this issue for the static case. In this
work we study the effect of external noise on the Rayleigh-
Bénard convection with sinusoidal modulation of the control
parameter, which has been studied experimentally@5# and
theoretically@9# in the context of internal noise. We intro-
duce a self-consistent approximation to the corresponding
Swift-Hohenberg equation, which allows an efficient numeri-
cal calculation of the self-correlation of the order parameter.
We show that our approach reproduces the known results
both for the dynamic case without external noise@9,10# and
for the static case with external noise@1#. Then we estimate
the strength of the external noise that would be needed to fit
the experimental results of Meyeret al. @5#, and compare it

with the intensity of the fluctuations in the control parameter
compatible with recent experiments@6#.

We begin by briefly recalling the standard theory of
Rayleigh-Bénard convection. In the typical experimental set-
ting, we have a fluid between two horizontal plates, forming
a cell of lateral sizeL̃, heightd, and aspect ratioL5L̃/d.
The density of the fluid isr, its temperature isT, its velocity
is u, and its pressure isp. The kinematic viscosity is denoted
by n, the thermal diffusivity byk, and the gravitational ac-
celeration byg̃.

The description of the system proceeds by writing the
Navier-Stokes equations in the Boussinesq approximation
@3#, with rigid boundary conditionsu(z50)5u(z5d)50
and T(z50)5T(z5d)1DT, setting u5T2T0(z) ~with
T0 the temperature profile in the conductive state!, and intro-
ducing adimensional variables by the scalingt→(k/d2)t,
l→ l /d, DT→R, whereR5(ag̃d3DT)/(kn) is the Rayleigh
number. Defining the Prandtl numbers5n/k, the evolution
equations for the temperature and velocity fields then read

s21~] t1u•“ !u52“p1u ẑ1“

2u, ~1a!

~] t1u•“ !u5Ruz1“

2u, ~1b!

“•u50, ~1c!

with boundary conditionsu5u50 at z50, d.
Near the convection onset, linear stability analysis of

these equations gives the critical Rayleigh number
Rc51707.76 and the critical wave numberq053.117@3#.

Introducing the order parameterC(r ,t) with

u,u}C3~vertical eigenfunctions! ~2!

@here r stands for~x,y!# and applying“3“3 to Eq. ~1a!
gives the Swift-Hohenberg~SH! equation@2,3#

t0] tC~r ,t !5@e2 j̃0
4~q0

21“

2!22gC2~r ,t !#C~r ,t !

1AD j~r ,t !, ~3!

PHYSICAL REVIEW E DECEMBER 1996VOLUME 54, NUMBER 6

541063-651X/96/54~6!/6944~4!/$10.00 6944 © 1996 The American Physical Society



where t05(s10.5117)/(19.65s), j0
250.148, j̃0

45j0
2/

(4q0
2), ḡ50.699520.0047s2110.0083s22, g5ḡ/3, e

5(R2Rc)/Rc . We have modeled thermal noise as usual, by
adding a zero-mean, unit variance Gaussian white noise field
j(r ,t), that is, ^j(r ,t)&50, ^j(r ,t)j(r 8,t8)&5d(r2r 8)
d(t2t8). Its intensity, as given by equilibrium thermody-
namics @3#, is D th52skBT/(Rcrdn2);10211. The small-
ness of this noise intensity has been experimentally verified
@5,6# for e ~i.e., DT) independent of time and below the
convection threshold.

A well-known simplified version of~3! is the one-mode
equation@3,4,9#

t0Ȧ5@~e2ec!2ḡA2#A1A2g

L
j~ t !, ~4!

for the slowest modeA of the amplitude equation@4# which
describes the system in a finite cylindrical cell of radiusL.
Here ec5(j0p/L)

2, j(t) is a zero-mean, unit variance
Gaussian white noise, andg[D @3#.

The experiment we consider was performed by Meyer
et al. @5#. The working fluid was water, withr51, T;300
K, k51.4731023 cm2/s, ands56. The cell was cylindri-
cal with radiusL̃53.18 cm, heightd50.318 cm, and rigid
boundary conditions. The system was forced to sweep re-
peatedly through its convective onset by setting
e(t)5e01dcosvt, with udu.e0.0 and v51. The main
quantity measured was the Nusselt numberN
}(1/V)*^C2& dr . As will be shown later, in our approach
^C2& is independent of the coordinates, so the spatial aver-
aging can be omitted.

In this experiment an order-disorder transition was ob-
served. This is a sharp transition in the (e0 ,d) plane between
‘‘stochastic’’ behavior~the convective cell pattern is not re-
produced for successive cycles! and ‘‘deterministic’’ behav-
ior ~the same convective pattern reappears in successive
cycles!. This transition is depicted in Fig. 1. The transition
line can be defined as the curve on which the order-
parameter self-correlation after one period of the external
forcing, ^C(r ,t12p/v)C(r ,t)&, is equal to^C2(r ,t)&/2.
Several numeric and~approximate! analytic computations

~see, e.g.,@3,9,10#! show that the transition line predicted
from the standard theory can be made to fit the experimental
data, only by taking the internal noise strength as an adjust-
able parameter and setting it toD;104D th . The immediate
conclusion is that if the theory is correct there must be addi-
tional noise sources besides the pure thermodynamic noise.
The current proposals are hydrodynamic mechanisms that
can enhance the thermodynamic noise intensity or make it
nonwhite, and external noise sources such as fluctuations in
the boundary temperature of the cell. In this work we will
consider only the effect of the latter.

A proposed source of external noise are fluctuations in the
control parametere ~i.e., in DT) @1#, due to imperfect tem-
perature stabilization in the cell’s upper and lower plates.
This amounts to rewriting~3! with

e → e1Adh~r ,t !, ~5!

whereh(r ,t) is again a zero-mean, unit variance Gaussian
white noise field, which we take as independent ofj(r ,t). As
usual in this context@1#, Eq. ~3! with multiplicative noise
must be interpreted in the Stratonovich sense.

The main difficulty solving~3! or ~4! is their nonlinearity.
The usual linearization~see, e.g., Ref.@3#, and references
therein! around thedeterministicconductive profile~corre-
sponding toC[0) is clearly unsatisfactory for the periodic-
forcing experiment, though it gives good results for the static
case below convective onset@1,6#.

The approximation introduced in this work consists in re-
placing ~3! by

t0] tC~r ,t !5@e1Adh~r ,t !2 j̃0
4~q0

21“

2!2

2g^C2~ t !&#C~r ,t !1ADj~r ,t !, ~6!

where^C2(t)& is assumed independent ofr by the~statistic!
translational invariance of~3!, and is self-consistently com-
puted a posteriori. This is in the same spirit of the usual
mean-field approximation of statistical mechanics, which as-
sumes that the only important configuration near a critical
point is the spatially uniform one@11#, hence we call it
‘‘mean-field’’ ~MF! approximation. Fourier transforming
r→k, and using Novikov’s theorem@12# or a direct gener-
alization of the known correlation formulas@13#, the
instantaneous order-parameter structure factorS0(k,t)
5^C* (k,t)C(k,t)& can be shown to obey~for long times!
the equation

]

]t
S0~k,t !5

2

t S e~ t !1d2 j̃0
4~q0

22k2!2

2
g

2pE0
`

S0~v,t !v dv DS0~k,t !
1

d

2pt2E0
`

S0~v,t !v dv1
D

t2
. ~7!

Similarly the two-times structure factorS(k,t,t8)
5^C* (k,t)C(k,t8)& can be shown to obey

FIG. 1. Order-disorder transition line for the one-mode equation
~4!. The circles are the experimental data of Meyeret al. @5#. The
continuous line is the prediction of the MF approximation for
g5531027. The dotted line is the result of 105 Monte Carlo runs
with the sameg; the linewidth is greater than the standard devia-
tion.

54 6945BRIEF REPORTS



]

]t8
S~k,t,t8!5

1

t S e~ t8!1d2 j̃0
4~q0

22k2!2

2
g

2pE0
`

S0~v,t8!v dv DS~k,t,t8!, ~8!

with t8.t and initial conditionS(k,t,t)5S0(k,t). Here S
andS0 depend only onk5uku because of the~statistic! rota-
tional symmetry of~3!. From these quantities we can com-
pute the order-parameter self-correlation

^C~r ,t !C~r 8,t8!&5
1

~2p!2
E e2 ik•~r2r8!S~k,t,t8! d2k

~9!

and its mean-square value

^C2~ t !&5
1

2pE0
`

S0~k,t !k dk. ~10!

The closed character of the evolution equation forS0 ~or
^C2&) makes the approximation~6! self-consistent. Equa-
tions ~7! and ~8! have time-periodic solutions in the long-
time ~asymptotic! regime, which provide the self-correlation

and mean-square value of the order parameter. In what fol-
lows, these integro-differential equations are solved numeri-
cally, and the predicted order-disorder transition line is then
obtained through Eq.~10!.

In order to assess the validity of the MF approximation,
we first addressed the one-mode equation~4! with additive
noise only, for the parameter values of the experiment of
Meyer et al. @5#. We computed the order-disorder transition
line predicted by the MF approximation to~4!, thoroughly
similar to that leading from~3! to ~6!–~8!. Besides, we per-
formed a Monte Carlo integration of Eq.~4! @10,14#. We
plotted in Fig. 1 the corresponding transition lines, taking
g as an adjustable parameter as in Refs.@9,10#. The agree-
ment between both approaches is excellent, providing a vali-
dation of MF.

Next we computed the transition line predicted from~7!–
~10! for the SH equation with additive noise only, and the
parameters of Meyeret al. @5#. The result is shown in Fig. 2.
We observe that fitting the experimental data requires an
internal noise intensityD553104D th as usual@3,9,10#, but
besides this the agreement is as good as for the approaches of
these references. This provides further validation of MF.

We then solved~7!–~8! for the SH equation with additive

FIG. 2. Order-disorder transition line for the Swift-Hohenberg
equation~3!. The circles are the experimental data of Meyeret al.
@5#. The lines are the predictions of the MF approximation for
D5D th51.172310211 ~continuous line! andD553104D th ~dot-
ted line!.

FIG. 3. Transmitted heat flux versus time for the static case of
Ref. @1#, for D50.001 ande520.05. The continuous line is the
prediction of the MF approximation to the SH equation for
d50.1; the dashed line is the prediction ford50. The prediction
for the linear SH equation withd50.1 is the dotted line.

FIG. 4. Steady heat flux versuse for the static case of Ref.@1#,
for D50.001. The continuous line is the prediction of the MF ap-
proximation to the SH equation ford50; the dashed line is the
prediction ford50.1.

FIG. 5. Order-disorder transition line for the Swift-Hohenberg
equation~3!. The circles are the experimental data of Meyeret al.
@5#. The lines are the predictions of the MF approximation for
D5D th51.172310211 and successively higher values ofd50,
106D th , 10

8D th , and 1.13108D th . The crosses are the MF predic-
tion for d51024, compatible with the measurements of Ref.@6#.
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and multiplicative noise, and the parameters of the static case
considered in Ref.@1# (e5a5const,t05 j̃05q05g51). In
Fig. 3 we plotted the transmitted heat flux@}^C2&# as a
function of time for internal noiseD50.001 ande520.05
~slightly below the convective onset for additive noise only!.
We see that adding a small external noised50.1 anticipates
the onset of convection, as in Ref.@1#. We also computed for
comparison purposes the flux predicted by the linear ap-
proximation to~3! considered in Ref.@1#. In Fig. 4 we plot-
ted the steady heat flux~long-time regime! versus the deter-
ministic control parametera. The predicted anticipation of
the convective threshold ford.0 is obtained.

The agreement with the results of Ref.@1# is excellent.
We must note, however, that~except for the linear case in
Fig. 3! the results of Ref.@1# have been obtained through a
Monte Carlo integration of the full two-dimensional SH
equation. It is worth noting that the anticipation of the con-
vective threshold is appreciable only ford*100D.

Finally, we computed through~7!–~10! the order-disorder
transition line for the parameters of the time-periodic experi-
ment of Meyeret al. @5#, adding external noise as multipli-

cative noise in the SH equation, but taking the internal noise
to beD5D th . The results are plotted in Fig. 5.

We observe that the predicted transition line remains
the same as for additive noise up tod;106D th , and the
experimental transition line would be fitted ford;109D th .
This situation is far worse than that for purely additive
noise, in which the thermal noise intensity must be exagger-
ated by a factor of;104 to fit the data.

Besides, it must be noted that 109D th;1022, while recent
experiments@6# have shown that the lower and upper plate
temperatures~thuse) are routinely stabilized better than one
part in 1023. The typical values ofe0 andd being of order
1021, so big a value ofd is doubtful.

We can conclude therefore that the inclusion of external
noise as multiplicative noise in the control parameter of the
Swift-Hohenberg equation is not likely to explain the dis-
crepancy between the thermodynamic and observed noise
intensities.
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